

Lógica y ejecución condicional
(alternativas)

● Clase anterior
– Ejercicio: piedra-papel-tijeras
– Operaciones y prioridad

● Esta clase
– Calculadora
– Control de práctica

Operaciones booleanas (prioridad baja)

p q p or q p q p and q p not p
False False False False False False False True
False True True False True False True False
True False True True False False
True True True True True True

p = True # es True
q = (-10 > 5.5) # evalúa a False
print(p or q) # imprime True
print(p and q) # imprime False
print((p or q) and (not q)) # imprime True

Comparaciones (prioridad media)

● Permiten ver si dos valores son iguales, distintos o tienen algún
orden (mayor que, menor que, etc)

● Su prioridad es mayor a la lógica (and, or, not)
● Su prioridad es menor a la aritmética (+, -, *, ...)

x = 10
print(x == 10) # imprime True; == chequea igualdad
print(x != 10) # imprime False; != chequea desigualdad
print(x > 11) # imprime False; > es mayor que
print(x <= 12) # imprime True; <= es menor o igual que
Print(5 < x < 20) # imprime True

Aritmética (prioridad alta)

● Operaciones típicas (suma +,
resta -, multiplicación *)

● Divisiones (estándar /,
entera //, resto %)

● Potenciación (ej. 10**4) tiene
la prioridad más alta, luego
sigue la multiplicación y
divisiones

● Suma y resta tienen prioridad
mínima

print(10 + 7) # imprime 17
print(5 - 9.9) # imprime -4.9
print(8.1 * 3) # imprime 24.3
print(10 / 3) # 3.3333333...
print(10 / 5) # 2.0
print(3**4) # 81
print(81**.5) # 9.0

print(13 / 4) # 3.25
print(13 // 4) # 3
print(13 % 4) # 1
es resto de división entera

Piedra-papel-tijera

● Termine de desarrollar este
código

● Falta caso j1 dice tijera, que se
aborda tal como los demás

● Lección: se puede usar if-elif-
else dentro de bloques
indentados
– Hay segundo nivel de

indentación

Piedra-papel-tijera

● Termine de desarrollar
este código

● Ahora usamos la
operación lógica and
para combinar
comparaciones

Piedra-papel-tijera

j1 = input()
j2 = input()

j1_gana = ...

if j1 == j2:
print("empate")

elif j1_gana:
print("j1 gana")

else:
print("j2 gana")

● ¿Cuándo gana J1?
● Complete la línea

 j1_gana = ...

Piedra-papel-tijera

● El jugador 1 (j1) gana cuando
– j1 es piedra y j2 es tijera

● O bien
– j1 es papel y j2 es piedra

● O bien
– j1 es tijera y j2 es papel

● Son tres casos
● Podemos escribir una expresión que sea True siempre y cuando

se cumpla alguna de estas condiciones

Piedra-papel-tijera

● La variable j1_gana guarda el resultado de la expresión que
determina si alguno de los casos se cumplió

● Su forma es (caso1) or (caso2) or (caso3) …
● ¿Se puede escribir en varias líneas?

Piedra-papel-tijera

Ejercicios

Investigue este programa

print("ingrese un numero entero")
a = int(input())
print(a%2 == 0)
print((a%2 == 0) == True)

● ¿Es cierto que este programa imprime siempre lo mismo?
● ¿Por qué funciona así?

La Calculadora

Implemente una calculadora que funcione como se indica a
continuación.

Primero, su programa debe pedir dos números flotantes. Luego, debe
pedir la operación en un tercer input; ésta puede ser +, -, * ó / para
indicar adición, sustracción, producto o cuociente.

Finalmente, su programa debe imprimir en pantalla el resultado de
aplicar la operación sobre los números solicitados.

Práctica
Control 1

